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Abstract-Dispersion of Rayleigh-type surface waves is studied in a liquid-saturated porous solid
layer under a uniform layer of homogeneous liquid. and lying over a transversely isotropic elastic
half-space. Special cases have been deduced by reducing the dcpth of the layer to zcro and by
changing the transversely isotropic solid to an isotropic elastic solid.

A frequency equation in the form of a tenth-order determinant is obtained. For numerical
calculations. a p.. rticular model consisting of a water-saturated sandstone layer lying over a berylt
solid ..nd under a uniform layer of water is considered. To ohserve the effects of the depths of the
layers on the phase velocity. dispersion curves for the phase velocity have been plolled for different
values of the ratio of the depths of two layers.

INTRODUCTION

Liquid-saturated porous rocks are often prescnt on and below the surface of the Earth.
Sedimentary layers consisting of sandstone or limestone saturated with water. are usually
present below oceans. Layers of porous solids such as sandstone or limestone saturated
with ground water or oil are present in the Earth's crust. Constitutive equations and
equations of motion. including inertial terms. for such solids were formulated by Biot
(1956a. b). Biot (1956a. b. 1962a. b) found that propagation of two dilatational waves along
with one shear wave is possible in such solids. In the absence of dissipation. these waves are
elastic in nature. the propagation being at constant velocity with undiminished amplitude. If
dissip.ttion is taken into account. each of the waves is dispersive and dissipative; that
is. the velocity is a function of frequency. and amplitude undergoes spatial attenuation.
Dcrcsiewicz (1960. 1961. 1964a. b. 1965). Dcresiewicz and Rice (1962) and Deresiewicl
and Levy (1967) investigated various aspects of the effects of the presence of boundaries
on the propag'ltion of plane harmonic seismic waves in liquid-saturated porous solids.
Deresiewicl (1960. 1961. 1964a. b. 1965). Deresiewicz and Rice (1962) and Deresiewicz
saturated porous solids.

There are reasonable grounds for the assumption that geologic materials arc aniso
tropic. An obvious example is that of the materials deposited in water. Anisotropy in the
Earth's crust and upper mantle have significant effects on the surface wave characteristics
such as phase and group velocities. Many investigators have studied the propagation of
elastic waves in an isotropic medium. Stoneley (1926). Biot (1952) and Tolstoy (1954)
studied the propagation of elastic waves in a system consisting of a liquid layer of finite
depth overlying an isotropic half-space. Abubaker and Hudson (1961) studied the dispersive
properties of liquid overlying a semi-infinite. homogeneous. transversely isotropic half
space. Gogna (1979) considered surface wave propagation in a homogeneous anisotropic
layer lying over a homogeneous. isotropic. clastic half-space and under a uniform layer of
liquid.

Here we have considered the problem (two-dimensional) of surface wave propagation
in a liquid-saturated porous solid layer. overlying an impervious. transversely isotropic.
elastic. solid half-space and under a uniform layer of liquid. This appears to be of practical

t Beryl is a he~agonal cryst..1of the class specified by the group D~ (love. 1944).
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interest as the sediments deposited under water may be assumed to be transversely isotropic.
It is also a more realistic model for the ocean bottom. Hence, it is relevant to the study of
Rayleigh waves at the upper surface of the ocean. Some special cases have also been
discussed.

FORMATION OF TilE PROBLEM

We consider a medium consisting of a liquid-saturated porous layer, of thickness H,
resting on a transversely isotropic elastic half-space and under a uniform layer of liquid, of
thickness h. We consider a rectangular coordinate system, such that the z-axis is chosen in
the direction of increasing depth and z = 0 is taken as the interface between the two layers.
Hence, the transversely isotropic clastic solid (medium III) occupies the region: > H, the
liquid-saturated porous solid (medium II) occupies the region 0 < z < II, and the region
-h < z < 0 is occupied by the liquid layer (medium I), as shown in Fig. l.

We discuss a two-dimensional problem with wave front parallel to the y-axis, so that
the displacement components in the x and : direction are independent of y, and the
components in the y direction will vanish.

BASIC EQUATIONS AND THEIR SOLUTIONS

For the liquid layer (medium I), the equation of motion in terms of the displacement
potential rPo is given by

( la)

where a( = 'who/po) is the velocity of the dilatational wave in the liquid, Po is the density
and )'0 is the bulk modulus of the liquid.

The displacement components uo, "'0 and pressure p are given by

orPo
U o = ax'

iJtj;o • "1 2"-
"'0 = a: and p = - 0':: = - )'0 ,/,0, (l b)

where 0':: is the normal component of stress in the liquid.
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Assuming f/Jo = $0(=) eik(x-,·(,. substituting in (la) and solving. yields

and therefore
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(Ie)

where Ao, 8 0 are arbitrary constants and eo = JI-c 2/a. 2
•

For the liquid-saturated porous solid (medium II). the field equations are given by
Biot (1962a) as

and (2)

where t' = div u and e = div U.
u and U are displacements in the solid and liquid parts of the porous aggregate.

respectively; D. N. Q and R are the elastic constants for the solid-liquid aggregate; and
PII. PIZ and PZ2 arc the dynamical coetncients.

The dissipation coefficient h is

(3)

where tl is the fluid viscosity. X is the cocllicient of permeability and II is the porosity.
This expression for h is valid for the low frequency range. where the now in the pores

is of Poiseuille-type. For higher frequencies, a correction factor is applied to the viscosity,
replacing it by tJF, where F is a complex function of frequency evaluated by Biot (1956b).

We consider the Helmholtz resolution of each of the two displacement vectors. in the
form

u = gradlp+curl H.}
U '= gradt/!+curlG.

(4)

Substituting (4) into eqns (2) yields a pair of equations which arc satisfied provided that

(5)

and

(6)

If we eliminate t/! from eqns (5). we shall obtain a fourth-order differential equation in f/J.
To solve this equation, we substitute
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{ , (UJ)-}v-+ ~ 4>; = 0. (j= 1.2)

(7)

(8)

where 4>1 and 4>: are time harmonic scalar potentials;

, B+JB~-4AC
:x i = -----'----::2,--C-,---- -•

~ B- \, B~ -4AC
):.., = -~--_._-._----

- 2C

A = (D+2N)R-Q~.

B = (PII +i ~)R+(P~~+i~.)(D+2N)-2(P,~-i~.)Q,
tV W OJ

( . h)( h) ( h)~C= PII+I- p:~+i· - II,~-i ;
0) I!) (/}

and (1/ is the angular frequency.
With the help of eqns (7) and (8), it can be found that

where

(I'll w+ ih) R - (p I ,W - ih)Q - (A/:XJ~)

JIJ = ({-;;-~-;IJ+ih)Q-(I',~-(;)-ih)R (j = 1,2).

Solving cqns (6), wc obtain

(
II I ~(I) - ih)G = - - II
1I,~w+ih

= cxl)ll(say)

and

where

N(I'~~ +i h)
w,

:Xj = C

(9)

( I ()

( II)

( 12)

( 13)

(14 )

Hence, in an unbounded liquid-saturated. porous medium. two dilatational waves can
propagate along with one shear wave.

For two-dimensional motion in the x-= plane, the displacements in the solid
U = (Ii, 0, 11') and in the liquid U = (U, 0, ~V) are given by
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CtPl CtP~ Cl/ll
u = -~- + -~- + -.

ex ex c:
ctP I ctP: 21/11

W=-+---.c: c: cx
ctP I 0tP2 cl/l I

U=IlI~+Il:~+'Xo ~4'
uX t.:X u_

(tPl ctP, (I/It
W = III --;- +ll~ -;--: -'Xo -~-;

u: (.': ex

where 1/1\ = (- H)y.
Stresses in the solid (J"j' and in the liquid (J'. are

(J'ij = (De+Q6)JiJ+2N6il'}

(J' = Qe+&.

where J,j is the Kronecker delta. and
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(15)

(16)

(17)

Wuve potentials 411, (/>: and r/J I are the solutions of cqns (8) and (13), respectively, and
may be written as

(/>, = [Alek:~'+B,e k:~IJeikl'~'·/).

1/11 = {A.lek:~I+Hle k:~·':.eikl'··'·/);
( 18)

where A" B, arc arbitrary constants, k is the wave number, c is the ph~lse velocity and

( 19)

For a homogeneous, transversely-isotropic, elastic solid (medium III) with symmetry
about the :-axis, following Love (1944), the strain energy volume density function has the
form

2W~ = A"'(e;,+e~•. )+C"'e;:+2F"'(eu+e.,y)e::

+ 2(A '" - 2N"')e"ev.' + L"'(e}: +e;J + N"'e;,. ; (20)

where the displacement u'" = (11"', I'''', w"'), and

(i#j)
(21 )

(i == j).

Restricting motion to two dimensions (x, =), the strain energy volume density function
(20) becomes

(22)

Since W~ is of positive definite form, then
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A*>O. C*>O. L*>O and A*C*>F*2. (23)

It is also assumed that A * > L* and C* > L*.
Components of stress can be derived by the formulae:

The equations of motion where there are no body forces. are

where p* is the density of the transversely isotropic medium.
As in medium II. we seek a solution of (25) of the form

(1/*.1\'*) = (U*(=). W*(=)] e'kl " er)

and find that eqns (25) reduce to

L*U*"+ik(F*+L*)W*'-(A*-p*c2)k 2U* = o.}
C*W*"+ik(F*+L*)U*'-(L*-p*c 2)k 2W* = 0;

(24)

(25)

(26)

(27)

where the primes denote ditlcrentiation with respect to "=".
Following the orthodox. method of solving simultaneous linear equations with constant

coellicients. we write

U* = p* c· k
,'. }

~V* = Q* c· k.".

Substituting thesc values into (27). we obtain

(s2L*+R*)P*-(isJ*)Q* = O. }
-(isJ*)P*+(s2C*+S*)Q* = 0;

whereJ* = F*+L*. R* = p*c 2-A* and S* = p*c 2-L*.
For the non-trivial solution of eqns (29), we have

Equation (30) is quadratic in .1'2 and has the roots

- f+ (f2 -4L*C* R*S*) 1;2

2L*C*

(28)

(29)

(30)

(31 )

where f = R*C*+S*L*+J*2.
The ratio of the displacement components ut and w,*. from (29). corresponding to

S = sJ' is



Surface wave propagation in a porous layer 1261

W* Q*
_J =_J

Ut Pt
(32)

Thus, the solutions of eqns (25) can be written as

u* = {PTe-b ,: + P!e-b:: + P1eles ,: + Pteb ,:} eile(ot-ell,

w* = {ml (PTe-ie.,: + P~eb,:)+m2(P!e-b ,: + P!eb ,,)} ellc(t-ell ; (33)

where PT, P!, P! and Pt are arbitrary constants and

- r +(-I)i(r2 -4L*C*R*S*) 112sf = (j = 1,2).
2L*C*

(34)

Since the displacement components tend to zero when: tends to infinity, we therefore take
the expressions for u* and .~.• as

u* =(PTe-b ,: + P!e- le.:,) e,lc(ot-lotl,

w* = (mIPTe-Ics':+f1I2P!e-leo"')e,le(t-ell;

where Sl and S2 are assumed to be real and positive.

(34a)

BOUNDARY CONDITIONS

For two-dimensional motion, we consider the boundary conditions appropriate for
the following:

(a) The free surface of the liquid layer, which is the vanishing of the normal stress com
ponent at : = -II, i.e.

(i) (35)

(b) The interface between the liquid layer and the liquid-saturated porous solid. Following
Deresiewicz and Skalak (1963), these are the continuity of the stress components,liquid
pressure and component of velocity normal to the interface averaged over the bulk
area, along the interface at z =0, i.e.

(i) (0'::)11 + (0')11 = - (P)I = ;'0V24J

(ii) (0':0.)11 = 0

1 , (36)
(iii) P(0')11 = - (P)l = ;'0V-4J

(iv) (1- PHlV)1I +P( W)II = wo0

(c) The interface between the liquid-saturated porous solid and the transversely isotropic
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clastic solid. Following Den:siewicz and Skalak (I (3). assuming the transversely
isotropic clastic solid to he impervious. these are the continuity of stress and displace
mcntcompol1l:nts, and the vanishing of thc normal velocity of the liquid relati\e to the
solid in the liquid-saturated porous solid along the interface at :: = -II, i.e.

(i) (0'"),, +(11)" = (11;:lI"

(ii) (11:,)" = (11~')"1

(ii i) (11')11 = (ll'+)"1 (37)

(iv) (u)" = (1/+)"1

(v) (Ii')" - UV)" = O.

Making use of (I). (15). (16), (IS). (24) and (34a) in the above boundary conditions.
we obtain 10 homogeneous equations in A". B". A,. B,. A;. B;. A h B), Pi and P!. The
non-trivial solution of this system of equations requires

la"l = 0 (38)

where a,/. the entries of the tenth-order square matrix. arc as follows:

., :
11!1 = -a~1 = -..,.1.

(l:!) = -1l24 = 2~!.



'hJ = 0 (j'" 7.. 8,9.10),

Q+Rp.l c~
lJH%CJ)4= OJ .......

- JY ~~

a'a ""'(l-/lI)~lekll'l.

U<}J ;; (l - }£2)~ 2 e*m:.

UQ, :: (I - (XII) eklf
: ..

a~1 = OU::= 7.8.9. 10l,

where

a8$ = ,; )ekh'<l.

lin = -e -11tH.

a;j~ = 111110 = 0,

an = (Ill -1)t;'1 e- tfl
.;:,.

a'N = (pz -I}';ze -w';J,

alj~ =(xd-l)e- kHh,

a I fr j "" a(j "" I. 2, ' ., , 8),

(39)

The equatioll lalli =0, given by (JS), is the require(j f:'"eq ~tncy equatioll. relating the
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phase velocity c. to the wavelength 2n.k The wavelength is a multi-valued function of
phase velocity (each value corresponding to the different mode of propagation) and hence
indicates the dispersive nature of the wave. Such a surface wave will be homogeneous if.
and only if. the equation given by (38) has a real solution. i.e. there should be at least one
value of c for which 51 and 5z are real and positive.

SPECIAL CASES

(i) Substituting

A* = C* = ;.+211. F* = I. and L· == II. (41 )

a transversely isotropic half-space can be changed to an isotropic half-space. Hence. we
have

s~ =
C"

I - Hi-

.,-.

where

(
CZ) /R.== 2- ,is.;" If" ; -

, }+ III
ex - == -_.~--.. and

p*
(42)

Using the above relations. the frequency equation (3X) reduces to theequation obtained
by Hazra (1984), as the dispersion equation for Rayleigh-type surface wave propagation
in a liquid-saturated porous layer, lying over an isotropic clastic half-space and under a
uniform layer of liquid, Furthermore for kh ..... Cf.J. the liquid layer will behave as a liquid
half-space and the reduced frequency equation will give surl:lCe wave propagation in a
liquid-saturated porous layer, bounded between an isotropic clastic solid and a liquid half
space. It is found to be the same as that obtained by Hazra (19g4).

(ii) Reducing the thickness of the liquid-saturated porous layer to zero. i.e. H = 0
(without loss of generality, we can put the porosity 1/ = 0 also). we get

o o ekh;"

;'0 ("
- N;i =0 (43)

o o
-.;:"

as the dispersion equation of a liquid layer, overlying a transversely isotropic. elastic solid
half-space, which is the same as that obtained by Abubaker and Hudson (1961). The values
of PI. Pz. QJ' Qz. R 1 and R z are as in eqn (40).

Further substituting" = O. eqn (43) reduces to
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(44)

which gives Rayleigh-type surface wave propagation at the free surface of a transversely
isotropic, elastic half-space.

Substituting (42) in (44), we get

(45)

the equation for Rayleigh wave propagation at the free surface of an isotropic elastic solid.
(iii) Removing the overlying liquid layer by putting h =:; 0, the frequency equation (38)

will reduce to

(46)

where hij , the entries of a square matrix of the order eight, are given by

i = 1,2,3
i = 5,6, .... 9 (j =:; 1,2, .... 8).

Equation (46) is the frequency equation for surface wave prop'lgation in a liquid
saturated porous layer lying over a transversely isotropic, elastic solid h.llf-space. Using
relations (42), the transversely isotropic, elastic half-space Can be further changed to an
isotropic clastic solid.

DiSCUSSION AND NUMERICAL RESULTS

Since a large number of parameters enter into the final expressions, then in order to
discuss the possibility of propagation ofsurface waves discussed above along the x direction,
a particular model is considered. The model considered is assumed to consist of a layer of
water-saturated sandstone under a uniform layer of water and overlying a beryl solid as
the transversely isotropic. e1ustic half-space.

Equation (38) is a complt:x equation. For real wave numbers it is not possible to find
the value of the real wave velocity. This equation has, therefore, been reduced to a real
equation by assuming that the water-saturated sandstone is non-dissipative. We may men
tion that this is an assumption in order to solve the frequency equation (38) numericat\y,
to obt'lin the velocity of propagation.

For this model, we calculated the ratio of the phase velocity to the velocity of slow
dilatational waves in a water-saturated sandstone layer (Cfa2)' for given values of the
dimensionless number kH. The value of the ratio Cfa2 is found to be different for different
values of kH.

For the water layer, following Ewing et al. (1957), for sound speed. density and bulk
modulus, we have taken the following values:

)'0 =O.214x lOll dynes cm- 2,

Po = I g cm-J,

giving the velocity of the P wave as

a = 1.463 x lOs cm s- I.

For water-saturated sandstone (medium II), keeping in view the experimental results
given by Yew and Jogi (1976) which differ slightly from the experimental results given by
Fatt (1959), the following values of the relevant parameters are taken:
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P = 2.15 X lOll dynes em

Q;: 0.013 X lOll dynes cm

R:: 0.0637 X lOll dynes em -:

N;: 0.922 X lOll dynes em-:

PII ;: 1.9032 g em )

PI: ;: 0.0 g cm .1

Pc: ;: 0.268 gem )

/3 = 0.268

'/ = 0 (non-dissipative solid).

The velocities of the PI' P, and SV waves for the above constants an:

XI = 3.326x 10 5 em s I

X:;: 1.54 x 10 5 em 5 I

Xl ;: 2.2 x 10' em s I

respectively.

For the impervious. clastic beryl half-space (mediulll Ill). following Love (1944). the
values of the relevant parameters arc taken to be

A"':: 26.94 x 1011 dynes em

C'" = 23.63 x lOll dynes em

F'" :: 6.61 X 1011 dynes em

L'" :: 6.53 X lOll dynes em

p"':: 2.7 gcm '.

It denotes the: de:plh of the wate:r layer and If is th~lt of the: waler-saturated sandstone
layer. For the case of numerical cakulation. we h.. ve: fixed the v.. lue of It, II. Nume:rical
re:sults have: been obtained only for the following value:s of hiIf:

It

If
0.0. 0.5. 1.0. 2.0. 5.0 and 9.0.

Using all the above value:s of parameters for the assumed modd and for each value of
It/fl. we obtained solutions of egn (38) for ('/x! in the appropriate range (so th.. t SI and S!

remain real). The value of the dimensionless number kif is considered to vary from 0 to 3.
For the solutions. a computer program in FORTRAN-IV was used on a Pc.

When the depth of the water layer is zero. i.e. hiH = O. the phase velocity decreases
rapidly with increasing values of kH. It keeps on decreasing almost at the same rate until
kll assumes the value 1.2 approximately. ~Ifter which the rate of decre:ase of c becomes
gradual. For larger values of kfl. the phase velocity becomes almost constant. approaching
the velocity of the PI wave in a liquid-saturated porous solid.

For the case when hi fI :: 0.5. i.e. the thickness of the water layer is half that of the
porous solid layer. the behaviour of the dispersion curve is the same as in the previolls case.
However. the rate of decrease in phase velocity becomes slower as kll assumes the value
t .0. approximately.

When the thickness of both layers are the same. i.e. h/ fI;: I. it was Observed that the
phase vdocity decreases rapidly with increasing values of kfl. The rate of decrease remains
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almost constant. The phase velocity attains a minimum value. approximately equal to the
velocity of the Pr wave in water-saturated sandstone at kH ~ 1.3. after which the second
mode starts.

If the thickness of the water layer is double that of the porous layer. the phase velocity
decreases more rapidly than when h = H. attaining a minimum value for kH .~ 0.9.

It has been observed that as the value ofh!H increases. the phase velocity of the surface
wave decreases. However, the rate of decrease of phase velocity with increasing kH,
decreases.

If the thickness of the water layer is considered larger than that of the porous solid
layer. e.g. h!H ~ 5. then reverse behaviour of the dispersion curve is observed. The value
of phase velocity increases with increasing values of kH and also with increasing values of
hrH. A wave exists only for smaller values of kH.
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